LECTURE 35 - COOLING AND DRYING OF COMPRESSED AIR

SELF EVALUATION QUESTIONS AND ANSWERS

1: A compressor delivers 500 m 3 of free air per hour at a pressure of 8 bar gauge and a temperature of $60^{\circ} \mathrm{C}$. Atmospheric air at compressor intake has a relative humidity of 70 $\%$ and a temperature of $20^{\circ} \mathrm{C}$. Determine the amount of water that can be extracted from the compressor plant per hour.

2 : Find the amount of condensate in one hour if 22 kW compressor operates under the following condition a) Air at 60% relative humidity and $30^{\circ} \mathrm{C}$ ambient temperature is pressurised to $7 \mathbf{~ k g} / \mathbf{c m}^{2}$ (7 bar). It is then cooled to $\mathbf{2 5}^{\circ} \mathrm{C}$. Compressor output is $\mathbf{3 ~ \mathbf { ~ N m }}{ }^{\mathbf{3}} / \mathbf{m i n}$ at $7 \mathrm{~kg} / \mathrm{cm}^{2}$ (7 bar)

3 : Air is used at a rate of $2 \mathrm{~m}^{3} / \mathrm{min}$ from a receiver at $40^{\circ} \mathrm{C}$ and 1000 kPa (gauge). If the atmosphere pressure is 101 kPa (abs) and the atmospheric temperature is $20^{\circ} \mathrm{C}$. How many $\mathbf{m}^{\mathbf{3}} / \mathbf{m i n}$ of free air (standard $\mathbf{m}^{\mathbf{3}} / \mathbf{m i n}$) must the compressor provide?

4: a. Calculate the required size of the receiver that must supply air to pneumatic system consuming $0.9 \mathrm{~m}^{3} / \mathrm{min}$ for 10 minutes between 828 kPa and 690 kPa before the compressor resumes operation b. what size is required if the compressor is running and delivering at $\mathbf{0 . 1 0 \mathrm { m } ^ { 3 }} / \mathrm{min}$

Q1 Solution: Refer to Table 3.3

At $20^{\circ} \mathrm{C}$ and zero bar gauge pressure, $100 \mathrm{~m}^{3}$ of free saturated air contains 1.73 kg of water. From the definition of RH

Relative humidity $=\frac{\text { Amount of water actually present in air }}{\text { Amount of water present in saturated air }} \times 100$
$70=\frac{\text { Amount of water actually present in air }}{1.73} \times 100$
Amount of water actually present in air $=1.211 \mathrm{~kg}$
Since $400 \mathrm{~m}^{3}$ is delivered, water content of air entering the compressor $=1.211 \times 5=6.055 \mathrm{~kg}$
From the Table 3.3, corresponding to $60^{\circ} \mathrm{C}$, and 8 bar compressor output pressure, amount of water per 100 m 3 of free saturated air is given by 1.44

Since 400 m 3 is delivered, water content of air leaving the compressor $=1.44 \times 5$
$=7.2 \mathrm{~kg}$
Therefore the amount of water extracted from the compressor plant per hour is
$7.2-6.055=1.145 \mathrm{~kg}$

Q2 Solution:

Refer the nomogram given in the Figure 3.6, locate point 1 which corresponds to inlet temperature of the compressor and erect a perpendicular line to meet 60% RH line. And then draw the horizontal line to cut 6bar pressure line. We get pressure dew point temperature as $60^{\circ} \mathrm{C}$. Since the air is cooled to 25 erect a vertical line to cut 6 bar pressure line. From the nomogram water liquid collected is 20.7-3.6 $=17.1 \mathrm{~g} / \mathrm{Nm}^{3}$

Q3 Solution:

$$
\begin{aligned}
& \mathrm{p}_{2}=1000 \mathrm{kPa}(\text { gauge })=1101 \mathrm{KPa}(\text { absoulte }) \\
& \mathrm{p}_{1}=101 \mathrm{KPa}(\text { absoulte }) \\
& \mathrm{T}_{2}=40^{\circ} \mathrm{C}=40+273=313 \mathrm{~K}
\end{aligned}
$$

$\mathrm{T}_{1}=20^{\circ} \mathrm{C}=20+273=293 \mathrm{~K}$
$V_{2}=2 \frac{\mathrm{~m}^{3}}{\min ^{\prime}}$
Using General gas law
$\frac{p_{1} V_{1}}{T_{1}}=\frac{p_{2} V_{2}}{T_{2}}$
$\frac{101 \times V_{1}}{293}=\frac{1101 \times 2}{313}$
Solving we get $V_{1}=20.40$ standard $\frac{\mathrm{m}^{3}}{\mathrm{~min}}$
Q4 Solution: The air receiver size can be determined by using the following equation
$\mathrm{V}_{\mathrm{r}}=\frac{101 \mathrm{t}\left[\mathrm{Q}_{\mathrm{r}}-\mathrm{Q}_{\mathrm{c}}\right]}{\left[\mathrm{p}_{\max }-\mathrm{p}_{\min }\right]}$

Part a

$V_{r}=$ receiver size $\left(m^{3}\right)$
$t=$ time that receiver can supply required amount of air,$(\mathrm{min})=10 \mathrm{~min}$
$Q_{r}=$ consumption rate of pneumatic system $\left(\operatorname{standard} \frac{\mathrm{m}^{3}}{\min }\right)=0.90 \mathrm{~m}^{3} / \mathrm{min}$
$Q_{c}=$ outflow rate of compressor $\left(\operatorname{standard} \frac{\mathrm{m}^{3}}{\min }\right)=0 \mathrm{~m}^{3} / \mathrm{min}$
$\mathrm{p}_{\text {max }}=$ maximum pressure level in receiver $(\mathrm{kPa})=828 \mathrm{kPa}$
$\mathrm{p}_{\text {min }}=$ maximum pressure level in receiver $(\mathrm{kPa})=690 \mathrm{kPa}$
$\mathrm{V}_{\mathrm{r}}=\frac{101 \times 10[0.9-0]}{[828-690]}$
Solving we get $V_{r}=6.586 \mathrm{~m}^{3}$

Part b

The required size of the compressor when the compressor is running and delivering air at $0.170 \mathrm{~m}^{3} / \mathrm{min}$
$\mathrm{V}_{\mathrm{r}}=\frac{101 \times 10[0.9-0.10]}{[828-690]}$
Solving we get $V_{r}=5.855 \mathrm{~m}^{3} \cong 5.9 \mathrm{~m}^{3}$

