LECTURE 35 – COOLING AND DRYING OF COMPRESSED AIR

SELF EVALUATION QUESTIONS AND ANSWERS

1: A compressor delivers 500 m3 of free air per hour at a pressure of 8 bar gauge and a temperature of 60°C. Atmospheric air at compressor intake has a relative humidity of 70 % and a temperature of 20°C. Determine the amount of water that can be extracted from the compressor plant per hour.

2 : Find the amount of condensate in one hour if 22 kW compressor operates under the following condition a) Air at 60% relative humidity and 30°C ambient temperature is pressurised to 7 kg/cm²(7 bar). It is then cooled to 25 °C. Compressor output is 3 Nm³/min at 7 kg/cm²(7 bar)

3 : Air is used at a rate of 2 m³/min from a receiver at 40°C and 1000 kPa (gauge). If the atmosphere pressure is 101 kPa (abs) and the atmospheric temperature is 20 °C. How many m^3 /min of free air (standard m^3 /min) must the compressor provide?

4: a. Calculate the required size of the receiver that must supply air to pneumatic system consuming $0.9 \text{ m}^3/\text{min}$ for 10 minutes between 828 kPa and 690 kPa before the compressor resumes operation b. what size is required if the compressor is running and delivering at $0.10 \text{m}^3/\text{min}$

Q1 Solution: Refer to Table 3.3

At 20 °C and zero bar gauge pressure, 100 m^3 of free saturated air contains 1.73 kg of water. From the definition of RH

Relative humidity = $\frac{\text{Amount of water actually present in air}}{\text{Amount of water present in saturated air}} \times 100$

 $70 = \frac{\text{Amount of water actually present in air}}{1.73} \times 100$

Amount of water actually present in air = 1.211 kg

Since 400 m³ is delivered, water content of air entering the compressor = $1.211 \times 5 = 6.055$ kg

From the Table 3.3, corresponding to 60 °C, and 8 bar compressor output pressure, amount of water per 100 m3 of free saturated air is given by 1.44

Since 400 m3is delivered, water content of air leaving the compressor = 1.44×5

=7.2 kg

Therefore the amount of water extracted from the compressor plant per hour is

7.2-6.055=1.145 kg

Q2 Solution:

Refer the nomogram given in the Figure 3.6, locate point 1 which corresponds to inlet temperature of the compressor and erect a perpendicular line to meet 60%RH line. And then draw the horizontal line to cut 6bar pressure line. We get pressure dew point temperature as 60°C. Since the air is cooled to 25 erect a vertical line to cut 6 bar pressure line. From the nomogram water liquid collected is $20.7-3.6 = 17.1 \text{ g/Nm}^3$

Q3 Solution:

p₂ = 1000 kPa(gauge) = 1101 KPa(absoulte)

 $p_1 = 101 \text{ KPa}(\text{absoulte})$

 $T_2 = 40^{\circ}C = 40 + 273 = 313 \text{ K}$

$$T_1 = 20^{\circ}C = 20 + 273 = 293 \text{ K}$$

$$V_2 = 2 \frac{m^3}{\min},$$

Using General gas law

$$\frac{p_1 V_1}{T_1} = \frac{p_2 V_2}{T_2}$$
$$\frac{101 \times V_1}{293} = \frac{1101 \times 2}{313}$$

Solving we get $V_1=20.40$ standard $\frac{m^3}{min}$

Q4 Solution: The air receiver size can be determined by using the following equation

$$V_{\rm r} = \frac{101 \, t \, [Q_{\rm r} - Q_{\rm c}]}{[p_{\rm max} - p_{\rm min}]}$$

Part a

 V_r = receiver size (m³)

t=time that receiver can supply required amount of air , ($\min)=10\ min$

 $Q_r = \text{consumption rate of pneumatic system}\left(\operatorname{standard} \frac{\mathrm{m}^3}{\mathrm{min}} \right) = 0.90 \,\mathrm{m}^3/\mathrm{min}$ $Q_c = \text{outflow rate of compressor}\left(\operatorname{standard} \frac{\mathrm{m}^3}{\mathrm{min}} \right) = 0 \,\mathrm{m}^3/\mathrm{min}$ $p_{\mathrm{max}} = \mathrm{maximum \ pressure \ level \ in \ receiver}(kPa) = 828 \,\mathrm{kPa}$ $p_{\mathrm{min}} = \mathrm{maximum \ pressure \ level \ in \ receiver}(kPa) = 690 \,\mathrm{kPa}$

$$V_{\rm r} = \frac{101 \times 10 \ [0.9 - 0]}{[828 - 690]}$$

Solving we get $V_r = 6.586 m^3$

Part b

The required size of the compressor when the compressor is running and delivering air at $0.170m^3/min$

$$V_{\rm r} = \frac{101 \times 10 \left[0.9 - 0.10\right]}{\left[828 - 690\right]}$$

Solving we get $V_r = 5.855 \text{ m}^3 \cong 5.9 \text{m}^3$